Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effects of thermal aging on the mechanical properties of FeCrAl-ODS alloy claddings

Yano, Yasuhide; Tanno, Takashi; Otsuka, Satoshi; Kaito, Takeji; Ukai, Shigeharu*

Materials Transactions, 62(8), p.1239 - 1246, 2021/08

 Times Cited Count:5 Percentile:39.91(Materials Science, Multidisciplinary)

The FeCrAl-ODS alloy claddings were manufactured and Vickers hardness, ring tensile tests and TEM observations of these claddings were performed to investigate the effects of thermal aging at 450 $$^{circ}$$C for 5,000 and 15,000 h. The age-hardening of all FeCrAl-ODS alloy cladding was found. In addition, the significant increase in tensile strength was accompanied by much larger loss of ductility. It was suggested that this age-hardening behavior was attributed to the (Ti, Al)-enriched phase ($$beta$$' phase) and the $$alpha$$' phase precipitates (content of Al is $$<$$ 7 wt%). In comparison with FeCrAl-ODS alloys with almost same chemical compositions, there was significant age-hardening in both alloys. However, the extrusion bar with no-recrystallized structures was keeping good ductility. It was suggested that this different behavior of reduction ductility was attributed to the effects of grain boundaries, dislocation densities and specimen preparation direction.

Oral presentation

Atomistic modeling of hardening in thermally-aged Fe-Cr binary alloys

Suzudo, Tomoaki; Nagai, Yasuyoshi*; Alfredo, C.*

no journal, , 

It is widely known that Fe-Cr binary alloys undergo spinodal decomposition when they are thermally aged, and that this microstructural evolution causes hardening and loss of ductility of the material. The present study is about the first attempt to tackle this problem by exploiting atomistic modeling techniques. We apply Monte Carlo simulation to creating spinodally-decomposed microstructure and molecular dynamics to simulating edge dislocations moving through this microstructure by imposing shearing deformation. We then measure the critical stress as a measure of hardness for many cases over the progress in spinodal decomposition, and succeed in reproducing an experimentally-discovered proportionality between the phase separation parameter and the hardening.

2 (Records 1-2 displayed on this page)
  • 1